Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: structure determination and solution conformation

Atsushi Numata, ${ }^{*, a}$ Chika Takahashi, ${ }^{a}$ Yoshinori Ito, ${ }^{a}$ Katsuhiko Minoura, ${ }^{\text {a }}$ Takeshi Yamada, ${ }^{a}$ Chitose Matsuda ${ }^{b}$ and Kyosuke Nomoto ${ }^{b}$
${ }^{a}$ Osaka University of Pharmaceutical Sciences, 2-10-65, Kawai, Matsubara, Osaka 580, Japan
${ }^{b}$ Suntory Institute for Bioorganic Research, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan

Abstract

A novel class of cytochalasans, penochalasins A 1, B and C, have been isolated from a strain of Penicillium sp. originally separated from the marine alga Enteromorpha intestinalis, and their stereostructures have been established on the basis of NMR spectral analyses and chemical transformations. Different conformations of 1 in CDCl_{3} and $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine were determined by analysis of NMR data and molecular modelling. All the compounds exhibited potent cytotoxicity against cultured P388 cells.

Marine microorganisms are potentially a prolific source of highly bioactive secondary metabolites for the development of new pharmaceutical agents. As part of a programme to discover new antitumour metabolites produced by marine microorganisms, we previously reported that antitumour and cytotoxic compounds were produced by microorganisms originally isolated from the marine fish Halichoeres bleeki ${ }^{1}$ and Pseudolabrus japonicus, ${ }^{2,3}$ and the marine algae Sargassum tortile ${ }^{4-7}$ and Enteromorpha intestinalis, ${ }^{8}$ and their structures were established. Two of them, communesins A and B, were structurally unique cytotoxic metabolites of a strain of Penicillium sp. isolated from E. intestinalis. ${ }^{8}$ Further investigation of metabolites from this fungal strain led to the isolation of three new cytochalasans, designated penochalasins A 1, B 2 and C 3, together with known chaetoglobosins A 4^{9-12} and F 5,,$^{10.12,13}$ all of which showed potent cytotoxic activity in the P388 lymphocytic leukaemia test system in cell cultures. Chemically the cytochalasans are characterized by a highly substituted perhydroisoindol-1-one fused with a macrocyclic ring, which is a carbocycle, a lactone or a carbonate. A number of cytochalasans have been isolated and classified into several groups according to their structural features. ${ }^{14}$ NMR analyses using heteronuclear multiple-bond connectivity (HMBC) and nuclear Overhauser enhancement spectroscopy (NOESY) experiments and chemical correlations revealed that penochalasins A-C, $\mathbf{1}-\mathbf{3}$, are a new class of cytochalasans with a macrocyclic ring including a pyrrole moiety. We report herein the stereostructures and cytotoxic activities of compounds 1-3 and the solution conformation of 1 .

Results and discussion

The fungal strain was cultured at $27^{\circ} \mathrm{C}$ for 3 weeks in a medium containing 2% glucose, 1% peptone and 0.5% yeast extract in artificial seawater. The MeOH extract of the mycelium was purified by bioassay-directed fractionation employing a combination of Sephadex LH-20 and silica gel column chromatographies and high-performance liquid chromatography (HPLC) to afford penochalasins A 1, B 2 and C 3, and chaetoglobosins A 4 and F5. The last two have previously been isolated as metabolites of Chaetomium sp., ${ }^{9-11,13}$ but this is the first report of their occurrence as metabolites of Penicillium sp .

Penochalasin A 1 had the molecular formula $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3}$ established by high-resolution electron impact mass spectrometry (HREIMS). Its IR spectrum contained absorption bands at 3359,1690 and $1625 \mathrm{~cm}^{-1}$, characteristic of NH , a carbonyl group and an aromatic ring. A close inspection of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1 in CDCl_{3} (Table 1) by distortionless enhancement by polarization transfer (DEPT) and ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ correlation spectroscopy (COSY) experiments revealed the presence of two secondary methyls (C-11 and C-25), an allylic methyl (C-26), a tertiary methyl (C-12), two methylenes (C-10 and C-15), six sp ${ }^{3}$-hybridized methines (C-3, C-4, C-5, C-7, C-8 and C-16), two sp ${ }^{3}$ quaternary carbons (C-6 and C-9), di- and tri-substituted ethylenes ($\mathrm{C}-13$ and $\mathrm{C}-14$, and $\mathrm{C}-17$ and $\mathrm{C}-18$), a dienone ($\mathrm{C}-19$), an amide ($\mathrm{C}-1$ and $\mathrm{N}-2$) and a 3 -substituted indole, the last feature being supported by the UV spectrum and an EIMS fragment at m / z 130, corresponding to an indole ring with a methylene. In addition, the presence of a 2,5 disubstituted pyrrole moiety in 1 was assumed by the NMR signals at $\delta_{\mathrm{H}} 6.31$ (dd, $J 3.9$ and 2.7 Hz), 7.02 (dd, $J 3.9$ and 2.7 Hz) and $10.59(\mathrm{br} \mathrm{s})$, and at $\delta_{\mathrm{C}} 109.48,114.92,126.79$ and 138.90. ${ }^{15}$ The appearance of the signals due to an sp ${ }^{3}$ methine at $\delta_{\mathrm{H}} 3.94$ and $\delta_{\mathrm{C}} 53.42$ implied that one of the six sp ${ }^{3}$ methines is linked to an amido group. This was supported by a cross peak between $\mathrm{C}-1$ and $3-\mathrm{H}$ in an HMBC experiment which was carried out in [${ }^{2} \mathrm{H}_{5}$]pyridine because 1 is slightly soluble in CDCl_{3} (Table 2). The signals due to a methine at $\delta_{\mathrm{H}} 2.88$ and $\delta_{\mathrm{C}} 61.17$ and due to an sp^{3} quaternary carbon at $\delta_{\mathrm{C}} 57.21$ in CDCl_{3} indicated the presence of a trisubstituted epoxide (C-6 and C-7).
The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY analysis (Table 1) for the functional groups thus established led to partial structures $\mathrm{A}(\mathrm{C}-1$ to $\mathrm{C}-5$, and C-10 and C-11) and B (C-6 to C-8, C-13 to C-18, and C-25 and C-26) (Fig. 1), which were supported by HMBC correlations (Table 2). The geometry of the double bonds in the partial structure B was deduced from a chemical shift (δ_{C} 13.52) of the carbon signal of the allylic methyl ($\mathrm{C}-26$), ${ }^{16}$ a coupling constant ($J_{13,14} 15.3 \mathrm{~Hz}$) and NOEs between $26-\mathrm{H}$ and $16-\mathrm{H}$, and $26-\mathrm{H}$ and $25-\mathrm{H}$.
The connection of the partial structures A and B and the remaining functional groups (Fig. 1) was determined on the basis of HMBC correlations (Table 2). The typical HMBC correlations are summarised in Fig. 1. Based on this evidence, the planar structure of 1 was elucidated.

penochalasin A 1

penochalasin B 2

chactoglobosin A 4

Fig. 1 Partial structures and functional groups of penochalisin A 1 and observed HMBC correlations

The relative stereochemistry and conformation for 1 were established by NOESY experiments in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine (Table 2). The conformation and the observed key NOEṡ are summarised in Fig. 2. Analysis of the observed coupling'constants (Table 3) in the ${ }^{1} \mathrm{H}$ NMR spectrum of 1 in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine, using a modified Karplus equation, ${ }^{17}$ led to the required dihedral angles (Table 3), which except for those between $3-\mathrm{H}$ and $10-\mathrm{H}_{2}$ supported the conformation assigned on the basis of NOE experiments. Since the $J_{3,10 \alpha}$ and $J_{3,10 \beta}$ values are roughly equal, the dihedral angles between $3-\mathrm{H}$ and the 10α - and 10β Hs should be nearly equal and be both $c a .60^{\circ}$ or 120°. Selected difference NOE experiments in 1 showed nearly equal NOE values (4.5 and 4.7%, respectively) between $22-\mathrm{H}$ and $10 \alpha-\mathrm{H}$ and between $22-\mathrm{H}$ and $10 \beta-\mathrm{H}$ (Table 4), implying that the distance between $22-\mathrm{H}$ and $10 \alpha-\mathrm{H}$ is almost the same as that between $22-$ H and $10 \beta-\mathrm{H}$ and hence both the $3-\mathrm{H} / 10 \alpha-\mathrm{H}$ and $3-\mathrm{H} / 10 \beta-\mathrm{H}$ dihedral angles are approximately 120°. Considering the

penochalasin C 3

chaetoglobosin F 5

Fig. 2 Conformer 1a of penochalasin A 1 in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine and observed NOEs
generalized Karplus relationship, the $J_{3,10_{\alpha}}$ and $J_{3,10_{0}}$ values (8.2 and 6.8 Hz) in 1 are unusually large for coupling constants between protons with a dihedral angle of 120°. It has been reported that values of vicinal coupling constants depend on the electronegativity of a substituent attached to the same carbon atom as one of the vicinally coupled protons. ${ }^{18}$ It is therefore most likely that the unusual $J_{3,10_{\alpha}}$ and $J_{3,10_{\beta}}$ values in [${ }^{2} \mathrm{H}_{5}$]pyridine are due to the formation of a hydrogen bond between $2-\mathrm{H}$ and $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine, which is consistent with the fact that the proton signal of $2-\mathrm{H}$ in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine was found shifted downfield by 3.71 ppm , relative to that in CDCl_{3}. In addition to NOEs between $22-\mathrm{H}$ and $10-\mathrm{H}_{2}$, selected difference NOE experiments around the $10-\mathrm{H}_{2}$ of 1 in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine exhibited NOEs (2.6 and 2.8%, respectively) between $4^{\prime}-\mathrm{H}$ and $3-\mathrm{H}$ and between $4-\mathrm{H}$ and $10 \beta-\mathrm{H}$ (Table 4). In accordance with the NMR data mentioned above and listed in Tables 3 and 4, stereomodel $1 \mathbf{1 a}$ (Figs. 2 and 3) was created as a conformer of 1 in $\left[{ }^{2} \mathrm{H}_{5}\right.$]pyridine, using the CaChe work systems. Theoretical dihedral angles and internuclear distances (in part) for $\mathbf{1 a}$ are shown in Tables 3 and 4.

The observed coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectrum of

Table $1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of penochalasin A 1 in CDCl_{3}

Position	$\delta_{\mathrm{H}}{ }^{a}$		${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY	$\delta_{\text {C }}$
1				$175.34(\mathrm{q})^{\text {b }}$
2	5.84s			
3	3.94dt	9.8 (103), 4.8 (10 2), 4.0 (4)	4, 10 $\alpha, 10 \beta$	53.42 (t)
4	2.68 dd	4.0 (3), 3.3 (5)	3, 5	54.29 (t)
5	1.99 qd	7.3 (11), 3.3 (4)	4,11	36.29 (t)
6				57.21 (q)
7	2.88 d	5.8 (8)	8	61.17 (t)
8	2.71 dd	10.0 (13), 5.8 (7)	7,13	48.46 (t)
9				50.36 (q)
10~	3.07 dd	$14.2(10 \beta), 9.8 \text { (3) }$	$3,10 \beta$	35.35 (s)
β	3.15 dd	$14.2(10 \alpha), 4.8(3)$	$3,10 \alpha$	
11	1.19 d	7.3 (5)	5	13.37 (p)
12	1.30 s			20.05 (p)
13	6.81 ddd	15.3 (14), 10.0 (8), 1.8 (15ß)	8,14	132.80 (t)
14	5.78 ddd	$15.3(13), 11.5(15 \alpha), 3.6(15 \beta)$	13, 15 ${ }^{\text {a }}$	135.53 (t)
15 ${ }^{\text {a }}$	2.16 dt	$13.5(15 \beta), 11.5(14,16)$	$14,15 \beta, 16$	41.17 (s)
β	2.57 dddd	13.5 (15 $)$, 5.4 (16), 3.6 (14), 1.8 (13)	$15 \alpha, 16$	
16	2.88 m		15 $\alpha, 15 \beta, 17,25$	34.11 (t)
17	5.65 dq	9.5 (16), 1.4 (26)	16, 26	$142.69(\mathrm{t})$
18				$134.85 \text { (q) }$
19				188.47 (q)
20				126.79 (q)
21	7.02dd	3.9 (22), 2.7 (24)	22, 24	114.92 (t)
22	6.31 dd	3.9 (21), 2.7 (24)	21, 24	109.48 (t)
23				138.90 (q)
24	10.59 br s			
25	1.10 d	6.7 (16)	16	19.70 (p)
26	1.94 d	1.4 (17)	17	13.52 (p)
1^{\prime}	8.22 br s		2^{\prime}	
1'a				136.54 (q)
2^{\prime}	7.10 d	2.3 (1')	1^{\prime}	122.91 (t)
$3 '$				111.33 (q)
$3^{\prime}{ }^{\prime}$				130.10 (q)
4^{\prime}	7.56 d	8.0 (5')	$5^{\prime}, 6^{\prime}$	118.19 (t)
$5 '$	7.25 t	8.0 ($\left.4^{\prime}, 6^{\prime}\right)$	$4^{\prime}, 6^{\prime}, 7^{\prime}$	122.62 (t)
6^{\prime}	7.18 t	8.0 (5', 7^{\prime})	$4^{\prime}, 5^{\prime}, 7^{\prime}$	120.10 (t)
$7 \prime$	7.42 d	8.0 (6')	$5^{\prime}, 6^{\prime}$	111.69 (t)

${ }^{a}{ }^{1} \mathrm{H}$ chemical shift values ($\delta \mathrm{ppm}$ from SiMe_{4}) are followed by the multiplicity of the signals, the coupling constant (J / Hz) and the coupling proton in parentheses. ${ }^{b}$ Letters $\mathrm{p}, \mathrm{s}, \mathrm{t}$ and q in parentheses indicate respectively primary, secondary, tertiary and quaternary carbons, assigned by DEPT.

Fig. 3 Newman projection formulae of conformers 1a, 1b and $1 \mathbf{c}$ in the $\mathrm{C}-3-\mathrm{C}-10$ and $\mathrm{C}-10-\mathrm{C}-3$ ' bonds

Fig. 4 Energy minimized conformer 1 b of penochalasin A 1 in CDCl_{3} and observed NOEs

1 in CDCl_{3} (Tables 1 and 3) showed close similarities with those in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine (Table 2) except that the coupling constants between $3-\mathrm{H}$ and $10 \beta-\mathrm{H}$ and between $3-\mathrm{H}$ and $10 \alpha-\mathrm{H}$ are 4.8 and 9.8 Hz , respectively. Analysis of the observed coupling constants in CDCl_{3} by the modified Karplus relationship showed dihedral angles approximate to 60 and 180° between 3H and $10 \beta-\mathrm{H}$ and between $3-\mathrm{H}$ and $10 \alpha-\mathrm{H}$, respectively, in this case (Table 3). In selected difference NOE experiments of 1 in CDCl_{3}, NOEs for $22-\mathrm{H} / 10 \alpha-\mathrm{H}$ and $3-\mathrm{H} / 10 \beta-\mathrm{H}$ were observed together with those for $4^{\prime}-\mathrm{H} / 3-\mathrm{H}$ and $4^{\prime}-\mathrm{H} / 11-\mathrm{H}$, whereas no NOE for $22-\mathrm{H} / 10 \beta-\mathrm{H}$ and $3-\mathrm{H} / 10 \alpha-\mathrm{H}$ was found (Table 4). Based on this evidence, 1b (Figs. 3 and 4) was elucidated as a conformer of 1 existing in CDCl_{3}, which is formed from 1a by rotation of the C-3-C-10 and C-10-C-3' axes.
The conformational behaviour of 1 was investigated by computing the potential energy surface as a function of rotational angles (x and y) for the C-3-C-10 and C-10-C-3' axes using the CaChe MM2 method. The conformational space was sampled by varying x and y in steps of 15° for the range from 0° to 360°. At each point a full geometry optimization was carried out, which yielded ten local minima. The energy for one of the minima was $124.51 \mathrm{kcal} \mathrm{mol}^{-1} \dagger$ and a conformer with this energy corresponded to conformer $\mathbf{1 b}$ in CDCl_{3}. The energy of the lowest minimum in the energy surface was $122.98 \mathrm{kcal} \mathrm{mol}^{-1}$ and a conformer 1 c with this energy showed the $3-\mathrm{H} / 10 \beta-\mathrm{H}$ and $10 \beta-\mathrm{H} / \mathrm{C}-3^{\prime}-\mathrm{C}-2^{\prime}$ dihedral angles of -63.9 and 26.0°, respectively (Figs. 3 and 5). Though the energy (129.39 kcal mol^{-1}) of conformer la in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine was found to be higher

[^0]Table $2{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of penochalasin A 1 in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine

Position	$\delta_{\mathrm{H}}{ }^{a}$		NOEs ${ }^{\text {b }}$	$\delta_{\text {C }}$	HMBC (C)
1			176.75 (q) ${ }^{\text {c }}$		
2	9.55 br s		12		1,4,9
3	4.26 ddd	8.2 (10а), 6.8 (10ß), 2.2 (4)	11, 12, 4^{\prime}	54.32 (t)	1, 4, 5, 9, 3'
4	2.80 dd	5.2 (5), 2.2 (3)	$10 \beta, 11,22$	54.32 (t)	1,3, 5, 6, 9, 10, 23
5	1.94 qd	7.2 (11), 5.2 (4)	8	36.95 (t)	3,4,6
6				57.27 (q)	
7	3.30 d	6.0 (8)	12,13	62.10 (t)	6, 8, 9, 12, 13
8	3.30 dd	9.5 (13), 6.0 (7)	5,14, 24	48.11 (t)	1,6, 7, 9, 14, 23
9				51.64 (q)	
10α	3.51 dd		22	35.65 (s)	$3,2^{\prime}, 3^{\prime}, 3^{\prime} \mathrm{a}$
β	$3.38 \mathrm{dd}$	$14.0(10 \alpha), 6.8 \text { (3) }$	$4,22$		
11	0.92 d	7.2 (5)	3, 4, 12	12.84 (p)	4, 5, 6
12	1.26 s		2, 3, 7, 11	19.84 (p)	5, 6, 7
13	7.18 ddd	15.5 (14), 9.5 (8), 1.8 (15 β)	7,17	132.97 (t)	7, 8, 9, 14, 15
14	5.89 ddd	15.5 (13), 11.5 (15 α), 3.6 (15 β)	8, 16, 24	135.16 (t)	8,15
15 ${ }^{\text {d }}$	1.86 dt	$13.0(15 \beta), 11.5(14,16)$	17, 25	41.23 (s)	13, 14, 16, 17, 25
β	2.37 dddd	13.0 (15), 5.4 (16), 3.6 (14), 1.8 (13)	25		13, 14, 16, 17
16	2.65 m		14,26	33.59 (t)	17, 18, 25
17	5.55 dq	11.2 (16), 1.5 (26)	13,15x, 24	$146.46(\mathrm{t})$	15,16, 25, 26
18				$135.80 \text { (q) }$	
19				189.65 (q)	
20				131.65 (q)	
21	7.36 dd	4.0 (22), 2.5 (24)		114.37 (t)	22, 23
22	6.77 dd	4.0 (21), 2.5 (24)	4, 10, 10β	109.53 (t)	20, 21, 23
23				139.88 (q)	
24	11.06 br s		$8,14,17$		20, 21, 22, 23
25	0.84 d	6.7 (16)	15 $\alpha, 15 \beta, 26$	19.42 (p)	15, 16, 17
26	1.90 d	1.5 (17)	16, 25	12.84 (p)	17, 18, 19
1^{\prime}	12.08 br d	2.5 (2')	7^{\prime}		$1^{\prime} \mathrm{a}, 2^{\prime}, 3^{\prime}, 3$ 'a
$1^{\prime \prime}{ }^{\prime}$					
2^{\prime}	7.49d	2.5 (1')		124.74 (t)	1'a, 3'a, 3', 10
3^{\prime}				111.67 (q)	
$3{ }^{\prime} \mathrm{a}$				128.44 (q)	
4^{\prime}	7.85 d	$7.4\left(5^{\prime}\right)$	3	118.83 (t)	1'a, 3', 6'
$5{ }^{\prime}$	7.30 td	$7.4\left(4^{\prime}, 6^{\prime}\right), 1.5\left(7^{\prime}\right)$		119.60 (t)	$3^{\prime} \mathrm{a}, 7^{\prime}$
6^{\prime}	7.35 t	$7.4\left(5^{\prime}, 7^{\prime}\right)$		121.98 (t)	$1^{\prime} \mathrm{a}, 4^{\prime}$
$7 \prime$	7.65 dd	$7.4\left(6^{\prime}\right), 1.5\left(5^{\prime}\right)$	1^{\prime}	112.32 (t)	$5^{\prime}, 3^{\prime} \mathrm{a}$

${ }^{a}{ }^{1} \mathrm{H}$ chemical shift values ($\delta \mathrm{ppm}$ from SiMe_{4}) are followed by the multiplicity of the signals, the coupling constant $(J / \mathrm{Hz}$) and the coupling proton in parentheses. ${ }^{b}$ Observed in the NOESY experiment. ${ }^{c}$ Letters $\mathrm{p}, \mathrm{s}, \mathrm{t}$ and q in parentheses indicate respectively primary, secondary, tertiary and quaternary carbons, assigned by DEPT.

Table 3 Experimental and theoretical coupling constants and dihedral angles in compound 1

Atom numbers	$\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine		1a Dihedral angles $\left({ }^{\circ}\right)^{b}$	CDCl_{3}		1b Dihedral angles $\left({ }^{\circ}\right)^{b}$
	$J(\mathrm{~Hz})$	Dihedral angles ($\left.{ }^{\circ}\right)^{a}$		$J(\mathrm{~Hz})$	Dihedral angles (${ }^{\circ}$) ${ }^{a}$	
3-H/4-H	2.2	114.9	125.8	4.0	124.6	127.0
3-H/10 α - H	8.2	35.6 or 144.4	109.2	9.8	152.8	177.1
$3-\mathrm{H} / 10 \beta-\mathrm{H}$	6.8	42.2 or 135.5	- 133.0	4.8	51.5	-63.2
4-H/5-H	5.2	49.6	50.2	3.3	58.9	51.8
7-H/8-H	6.0	134.1	152.7	5.8	133.2	153.6
$8-\mathrm{H} / 13-\mathrm{H}$	9.5	151.1	166.6	10.0	153.9	165.6
13-H/14-H	15.5	$180.0^{\text {c }}$	- 179.7	15.3	$180.0^{\text {c }}$	-179.8
14-H/15x-H	11.5	164.4	178.2	11.5	164.4	178.8
14-H/15 $3-\mathrm{H}$	3.6	57.4	-64.8	3.6	57.4	-64.1
15 α-H/16-H	11.5	164.4	172.8	11.5	164.4	172.7
15ß-H/16-H	5.4	48.7	55.2	5.4	48.7	55.0
16-H/17-H	11.2	161.9	152.1	9.5	151.1	150.8
$10 x-\mathrm{H} / \mathrm{C}-3^{\prime}-\mathrm{C}-2^{\prime}$			113.7			-29.0
$10 \beta-\mathrm{H} / \mathrm{C}-3^{\prime}-\mathrm{C}-2^{\prime}$			-0.5			-146.8
$\mathrm{C}-8-\mathrm{C}-9 / \mathrm{C}-23-\mathrm{N}-24$			-5.7			-4.0
C-18-C-19/C-20-N-24			-3.8			-4.8

${ }^{a}$ Calculated by a modified Karplus equation $\left(J=12.4 \cos ^{2} \varphi ; 0^{\circ} \leqslant \varphi \leqslant 180^{\circ}\right) .{ }^{17}{ }^{b}$ Theoretical. ${ }^{c}$ Deduced from a trans coupling constant in an olefin.
than that of the minimum energy conformers in the CaChe MM2 calculations, it seems most likely that the energy is actually in lower levels due to other factors such as the solvent effect in $\left[{ }^{2} \mathrm{H}_{5}\right.$]pyridine.
The absolute configuration assigned to $\mathbf{1}$ has not been
established independently, but is assumed to be the same as for its co-metabolites, chaetoglobosins A 4 and F 5.
Penochalasin C 3 had the same molecular formula as 1 as deduced from HREIMS. The general features of its UV, IR and NMR spectra (Table 5) closely resembled those of 1 (Table 1)

Table 4 Experimental NOE values in compound $\mathbf{1}$ and theoretical distances in conformers $\mathbf{1 a}$ and $\mathbf{1 b}$

Atom numbers	$1\left(\left[{ }^{2} \mathrm{H}_{5}\right]\right.$ pyridine $)$	1 a	$1\left(\mathrm{CDCl}_{3}\right)$	1b
	NOEs	(\AA)	NOEs	Distances (\AA)
3-H/10x-H	≈ 0	2.86	≈ 0	3.10
$3-\mathrm{H} / 10 \beta-\mathrm{H}$	≈ 0	2.98	$2.2(3-H), 5.6(10 \beta-H)$	2.57
$3-\mathrm{H} / 11-\mathrm{H}$	$2.8(3-\mathrm{H}), 2.5(11-\mathrm{H})^{a}$	2.21	3.6 (3-H), 8.6 (11-H)	2.21
$3-\mathrm{H} / 12-\mathrm{H}$	3.0 (3-H)	2.21	4.9 (3-H)	2.17
4-H/10 α - H	≈ 0	3.42	2.5 (4-H), 2.8 (10 $\alpha-\mathrm{H})$	2.54
$4-\mathrm{H} / 10 \beta-\mathrm{H}$	1.9 (4-H), 2.8 (10ß-H)	2.16	3.1 (4-H), 4.4 (10ß-H)	2.65
11-H/12-H	2.4 (11-H)	2.46	$]^{\text {b }}$ (${ }^{\text {a }}$	2.55
$22-\mathrm{H} / 4-\mathrm{H}$	2.6 (22-H), 2.3 (4-H)	2.73	3.3 (22-H), 4.0 (4-H)	2.78
22-H/10x-H	$2.9(22-\mathrm{H}), 4.5(10 x-\mathrm{H})$	2.92	2.2 (22-H), $5.9(10 x-H)$	2.25
22-H/10ß-H	4.0 (22-H), 4.7 (10及-H)	2.56	≈ 0	3.84
$4{ }^{\prime}-\mathrm{H} / 3-\mathrm{H}$	$1.2\left(4^{\prime}-\mathrm{H}\right), 2.6(3-\mathrm{H})$	2.50	3.1 (4'H), 4.9 (3-H)	2.86
$4^{\prime}-\mathrm{H} / 10 \beta-\mathrm{H}$	≈ 0	4.20	3.5 (4'H), $5.4(10 \beta-H)$	2.51
4'-H/11-H	≈ 0	4.12	$0.4\left(4^{\prime}-\mathrm{H}\right), 5.3(11-\mathrm{H})$	2.64
$4^{\prime}-\mathrm{H} / 12-\mathrm{H}$	≈ 0	3.56	≈ 0	4.06

${ }^{a}$ Protons irradiated in parentheses. ${ }^{b}$ The NOE could not be evaluated because the signals for $11-\mathrm{H}$ and $12-\mathrm{H}$ are close together.

Fig. 5 Lowest minimum energy conformer 1c
except that the signals for $5-\mathrm{H}, 7-\mathrm{H}, 12-\mathrm{H}, \mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-7$, $\mathrm{C}-12$ and $\mathrm{C}-14$ revealed chemical shifts different from those of 1 . The typical ${ }^{13} \mathrm{C}$ NMR signals for an epoxide at $\delta_{\mathrm{C}} 57.21$ (C-6) and 61.17 (C-7) in 1 were replaced by those due to a sp^{2} quaternary carbon and a hydroxymethine at $\delta_{\mathrm{c}} 147.92$ and 68.62 in 3 , respectively. The methine proton doublet $\left(7-\mathrm{H}, \delta_{\mathrm{H}}\right.$ 4.02) coupled to $8-\mathrm{H}$ was sharpened by $\mathrm{D}_{2} \mathrm{O}$ exchange, implying that it is due to a hydroxymethine. In addition, the C-12 methyl proton singlet ($\delta_{\mathrm{H}} 1.30$) in 1 was missing from 3 and replaced by the typical signals due to a terminal methylene at $\delta_{\mathrm{H}} 5.25$ and 5.48 in 3. This was supported by the ${ }^{13} \mathrm{C}$ NMR signals (δ_{C} 142.92 and 114.62) for C-6 and C-12. The above summarised evidence led to planar structure $\mathbf{3}$ for penochalasin C .
Penochalasin B 2 was assigned the same molecular formula as $\mathbf{1}$ and $\mathbf{3}$ as deduced from HREIMS. Its IR, UV and NMR spectra (Table 5) showed close correspondence with those of 1 (Table 1) except that the ${ }^{1} \mathrm{H}$ NMR signal of $5-\mathrm{H}$ in 1 disappeared from 2 and the signals for $7-\mathrm{H}, 11-\mathrm{H}, 12-\mathrm{H}, \mathrm{C}-4-\mathrm{C}-7$, $\mathrm{C}-9, \mathrm{C}-12, \mathrm{C}-14$ and $\mathrm{C}-17$ in $\mathbf{2}$ were found shifted downfield, relative to those of $\mathbf{1}$. The appearance of two allylic methyl proton singlets ($11-\mathrm{H}$ and $12-\mathrm{H}$) at $\delta_{\mathrm{H}} 1.77$ and 1.66 and two quaternary carbon signals ($\mathrm{C}-5$ and $\mathrm{C}-6$) at $\delta_{\mathrm{C}} 127.23$ and 131.48 implied the presence of a tetrasubstituted double bond linked to two methyls in 2, and the methine proton doublet ($7-\mathrm{H}$) coupled to $8-\mathrm{H}$ was assigned as a hydroxymethine on the basis of its chemical shift ($\delta_{\mathrm{H}} 3.98$) and the fact that the signal was sharpened by $\mathrm{D}_{2} \mathrm{O}$ exchange. These observations allowed assignment of planar structure 2 to penochalasin B .

Treatment of 1 with $2 \% \mathrm{HCl}$ in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) afforded 2 and 3 in a ratio of $2: 1$. Based on this finding, the absolute stereostructures of penochalasins B and C are represented as 2 and 3, respectively. These were supported by the observed coupling constants in 2 and 3.

The cytotoxic activities of penochalasins A 1, B 2 and C 3 were examined in the P388 lymphocytic leukaemia test system in cell cultures, according to the method reported previously. ${ }^{19}$ Compounds 1, 2, 3, 4 and 5 all exhibited potent cytotoxic activity ($\mathrm{ED}_{50} 0.4,0.3,0.5,0.6$ and $0.9 \mu \mathrm{~g} \mathrm{~cm}^{-3}$, respectively).

Experimental

General procedures

Mps were obtained on a Yanagimoto micromelting point apparatus and are uncorrected. UV spectra were recorded on a Shimadzu spectrophotometer and IR spectra on a Perkin Elmer FT-IR spectrometer 1720X. Optical rotations were obtained on a JASCO ORD/UV-5 spectropolarimeter and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. CD' spectra were recorded on a JASCO J-500A spectrometer. NMR spectra were recorded at $27^{\circ} \mathrm{C}$ on a Varian XL-300 spectrometer, operating at 300 and 75.4 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively, with tetramethylsilane (TMS) as an internal reference. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ COSY spectra were recorded on a Varian XL-300 spectrometer, and the HMBC and NOESY spectra on a Bruker DMX spectrometer with the usual parameters. EIMS were determined using a Hitachi M-80 spectrometer. Liquid chromatography over silica gel (mesh 230-400) was performed under medium pressure. HPLC was run on a Waters ALC-200 instrument equipped with a differential refractometer (R 401) and Shim-pack PREP-ODS ($25 \mathrm{~cm} \times 20 \mathrm{~mm}$ id). Analytical TLC was performed on precoated Merck aluminium sheets (DC-Alufolien Kieselgel 60 F254, 0.2 mm) with the solvent system $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (19:1), and compounds were viewed under a UV lamp and sprayed with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ followed by heating. MM2 calculations were carried out using the CaChe work system on a Macintosh platform.

Culturing and isolation of metabolites

A strain of Penicillium sp, was initially separated from the marine alga Enteromorpha intestinalis (Linne) Link (Ulvaceae) collected from Tanabe Bay, Japan. The marine alga was homogenized with sterile artificial seawater and applied to the surface of nutrient agar layered in a Petri dish. Serial transfers of one of the resulting colonies provided a pure strain of Penicillium sp. The fungal strain was grown in a liquid medium ($20 \mathrm{dm}^{3}$) containing 2% glucose, 1% peptone and 0.5% yeast extract in artificial seawater adjusted to pH 7.5 for 3 weeks at $27^{\circ} \mathrm{C}$. The culture was filtered under suction and the mycelium which was filtered off was extracted $(3 \times)$ with MeOH . The combined extracts were evaporated under reduced pressure and the resulting concentrate (63 g) was passed through Sephadex

Table $5{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of penochalasins B 2 and C 3 in CDCl_{3}

${ }^{a}{ }^{1} \mathrm{H}$ chemical shift values ($\delta \mathrm{ppm}$ from SiMe_{4}) are followed by the multiplicity of the signals, the coupling constant (J / Hz) and the coupling proton in parentheses. ${ }^{b}$ Letters $\mathrm{p}, \mathrm{s}, \mathrm{t}$ and q in parentheses indicate respectively primary, secondary, tertiary and quaternary carbons, assigned by DEPT.

LH-20, using $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2)$ as the eluent. The third fraction (28.2 g) was chromatographed on a silica gel column with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ gradient system as the eluent. The $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 199)$ eluate (659 mg) was purified by HPLC [MeOH -water ($4: 1$)] to afford compounds $1(14.4 \mathrm{mg}), 2(9.6$ $\mathrm{mg}), \mathbf{3}(4.9 \mathrm{mg}), \mathbf{4}(10.2 \mathrm{mg})$ and $5(9.1 \mathrm{mg})$, of which the last two were identified by comparison of their UV, IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with those reported previously. ${ }^{10-13}$
Penochalasin A 1. Obtained as colourless needles, mp 222$224^{\circ} \mathrm{C}$ (from acetone), $[\alpha]_{\mathrm{D}}-10$ (c 0.20 in CHCl_{3}); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 206(\log \varepsilon 4.58)$, 222 (4.66), 285 (4.40), 292 (4.09) and 313 (4.13); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3359(\mathrm{NH}), 1690(\mathrm{CON}$, $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$), 1623 ($\mathrm{Ar}-\mathrm{C}-\mathrm{C}$); m / z (EI) 509 ($33 \%, \mathrm{M}^{+}$), 442 (5), 380 (13), 243 (19), 202 (15), 171 (22), 131 (38) and 130 (100, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}$); [m/z (HREI) Found: M^{+}, 509.2677. $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $M, 509.2677]$; CD $\lambda\left(c 9.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{EtOH}) / \mathrm{nm} 225(\Delta \varepsilon+1.7), 233(0), 240(-1.1), 247(0), 263$ $(+2.0), 295(+3.4), 317(0), 338(-3.0)$ and $397(0) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are listed in Tables 1 and 2.
Penochalasin B 2. Obtained as a colourless powder, mp 177$179^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-6.2\left(c 0.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 206(\log \varepsilon$ 4.10), 222 (4.10), 284 (4.08), 293 (4.50) and 312 (4.45); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3410(\mathrm{NH}, \mathrm{OH}), 1693(\mathrm{CON}, \mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O})$ and 1628 (Ar-C-C); m / z (EI) 509 (33%, M $^{+}$), 491 (4), 380 (6), 379 (8), 362 (4), 361 (4), 306 (5), 305 (4), 131 (67) and 130 (100, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}$); [m/z (HREI) Found: $\mathrm{M}^{+}, 509.2686 . \mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3}$
requires M, 509.2677]; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are listed in Table 2.
Penochalasin C 3. Obtained as a colourless powder, mp 173$178{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-6.2\left(c 0.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 208(\log \varepsilon$ 4.50), 222 (4.59), 284 (3.92), 293 (3.96) and 315 (3.87); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3371(\mathrm{NH}, \mathrm{OH}), 1693(\mathrm{CON}, \mathrm{C}=\mathrm{C}-\mathrm{C}=0$), 1628 (Ar-C-C); m / z (EI) 509 (33%, M $^{+}$), 380 (1), 243 (3), 131 (36) and $130\left(100, \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}\right)$; [m / z (HREI) Found: $\mathrm{M}^{+}, 509.2668$. $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\left.M, 509.2677\right] ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are listed in Table 2.

Formation of Penochalasins B 2 and C 3 from Penochalasin A 1 A solution of 10% aqueous $\mathrm{HCl}\left(0.1 \mathrm{~cm}^{3}\right)$ was added to a solution of $1(4.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{MeOH}\left(1: 2 ; 0.4 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred for 30 min at room temp. after which it was diluted with water, neutralised with aqueous NH_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the extract under reduced pressure followed by HPLC (ODS) using MeOHwater ($4: 1$) afforded $2(2.1 \mathrm{mg})$ and $3(1.2 \mathrm{mg})$, which were identified by comparison with authentic samples.

Acknowledgements

We are grateful to Drs T. Hasegawa and T. Ito, Institute for Fermentation, Osaka, for the identification of the fungus and to Dr Y. Nabeshima, Osaka Prefectural Fisheries Experimental

Station, for the identification of the marine alga. Thanks are also due to Dr Y. Usami and Ms M. Fujitake of this university for the NMR and MS measurements.

References

1 C. Takahashi, T. Takada, T. Yamada, K. Minoura, K. Uchida,
E. Matsumura and A. Numata, Tetrahedron Lett., 1994, 35, 5013.

2 A. Numata, C. Takahashi, T. Matsushita, T. Miyamoto, K. Kawai, Y. Usami, E. Matsumura, M. Inoue, H. Ohishi and T. Shingu, Tetrahedron Lett., 1992, 33, 1621.
3 C. Takahashi, T. Matsushita, M. Doi, K. Minoura, T. Shingu, Y. Kumeda and A. Numata, J. Chem. Soc., Perkin Trans. 1, 1995, 2345.

4 C. Takahashi, A. Numata, Y. Ito, E. Matsumura, H. Araki, H. Iwaki and K. Kushida, J. Chem. Soc., Perkin Trans. 1, 1994, 1859.

5 C. Takahashi, A. Numata, E. Matsumura, K. Minoura, H. Eto, T. Shingu, T. Ito and T. Hasegawa, J. Antibiotics, 1994, 47, 1242.

6 C. Takahashi, Y. Takai, Y. Kimura, A. Numata, N. Shigematsu and H. Tanaka, Phytochemistry, 1995, 38, 155.

7 C. Takahashi, K. Minoura, T. Yamada, A. Numata, K. Kushida, T. Shingu, S. Hagishita, H. Nakai, T. Sato and H. Harada, Tetrahedron, 1995, 51, 3483.
8 A. Numata, C. Takahashi, Y. Ito, T. Takada, K. Kawai, Y. Usami, E. Matsumura, M. Imachi, T. Ito and T. Hasegawa, Tetrahedron Lett., 1993, 34, 2355.

9 S. Udagawa, T. Muroi, H. Kurata, S. Sekita, K. Yoshihira, S. Natori and M. Umeda, Can. J. Microbiol., 1979, 25, 170.

10 S. Sekita, K. Yoshihira, S. Natori, S. Udagawa, F. Sakabe, H. Kurata and M. Umeda, Chem. Pharm. Bull., 1982, 30, 1609.

11 S. Sekita, K. Yoshihira, S. Natori and H. Kuwano, Chem. Pharm. Bull., 1982, 30, 1618.
12 S. Sekita, K. Yoshihira and S. Natori, Chem. Pharm. Bull., 1983, 31, 490.

13 S. Sekita, K. Yoshihira, S. Natori and H. Kuwano, Chem. Pharm. Bull., 1982, 30, 1629.
14 S. Natori and I. Yahara, in Mycotoxins and Phytoalexins, ed. R. P. Sharma and D. K. Salunkhe, CRC Press, London, 1991, p. 291.

15 C. J. Pouchert and J. Behnke, The Aldrich Library of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ FT NMR Spectra, Aldrich Chemical Company, 1st edn., 1993, vol. 3, p. 2.

16 G. Englert, Helv. Chim. Acta, 1975, 58, 2367.
17 R. J. Abraham and J. S. E. Holker, J. Chem. Soc., 1963, 807.
18 K. L. Williamson, J. Am. Chem. Soc., 1963, 85, 516; D. H. Williams and N. S. Bhacca, J. Am. Chem. Soc., 1964, 86, 2742.
19 A. Numata, P. Yang, C. Takahashi, R. Fujiki, M. Nabae and E. Fujita, Chem. Pharm. Bull., 1989, 37, 648.

Paper 5/05566K
Received 22nd August 1995
Accepted 14th September 1995

[^0]: $\dagger 1 \mathrm{cal}=4.184 \mathrm{~J}$.

